- Convolution: $(f * g)(t) = \int_{0}^{\infty} f(\tau)g(t-\tau)d\tau$
 - Key property: $\mathcal{L}[(f * g)(t)] = F(s)G(s)$
 - Convolution is commutative
 - (g * f)(t) = (f * g)(t) Convolution is $\text{Implies } \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$
 - o Proof of this formula using a double integral and a change of variables with a Jacobian determinant
- Convolution on a finite range [0, t]:

$$\circ (f * g)(t) = \int_{0}^{t} f(\tau)g(t - \tau)d\tau$$

- Meaning of convolution: Convolution is the amount of overlap of g as it is shifted through another function f.
- **Applications**
 - o Signals (audio/visual) processing and filtering
 - o Probability distribution of two independent variables
 - Mixing problems
 - o Radioactive dumping/decay
 - The amount of radioactive material is the convolution of a dumping function and the decay function